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ABSTRACT 

Let E be a measu rab le  subse t  of ~k ,  k > 2, wi th  D(E) > 0. Let  

V = {O, V l , . . . ,Vk+l}  C R k, where V l , . . . , V k + l  are affinely indepen-  

dent .  We show t h a t  for r large enough,  we can find an  isometr ic  copy 

of rV  arbi t rar i ly  close to E.  T h i s  is a general izat ion of a t heo rem of 

l~urstenberg, Ka tzne l son  and  Weiss [FKW] showing a s imilar  p roper ty  

for R 2, V = {0, Vl,V2}. 

1. I n t r o d u c t i o n  

Let E be a measurable subset of ]R k, and let S range over all cubes in the space. 

We set 
D(E)  = lim sup m ( S  n E )  

l ( s ) - ~  re(S) 

where l(S) denotes the length of the side of S; D(E)  is the upper density of 

E. We are interested in configurations which are necessarily contained in E. A 

theorem of Furstenberg, Katznelson and Weiss [FKW] states that  if E C ]R 2, 

w i th / ) (E )  > 0, all large distances in E are attained. More precisely: 

THEOREM 1.1 ([FKW]): I f  E C ]R 2 with D(E)  > O, there exists lo such that for 

any l > lo one can find a pair of points x , y  E E with [[x - y[[ = I. 

This result was also proved afterwards by Bourgain [Bo], using methods 

of harmonic analysis, and also by Falconer and Marstrand [FaMa]. Bourgain 

generalized this result: 
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THEOREM 1.2 (Bourgain): Let E C I~ k with [)(E) > 0 and v l , . . . , v k - 1  

independent vectors in ]~k. Denote V ~-- {0, Vl, . . .  , V k _ l } .  Then there exists 

lo such that for any l > lo, E contains an isometric copy of  lV. 

It is natural to ask if the same is valid for larger configurations. Bourgain has 

shown by an example that this cannot be done in R 2 , and Graham [Gr] gener- 

alized this (using Rado's characterization of partition regular systems): We say 

that  a set of points S C ~k is spher ica l ,  if S is contained on the surface of some 

sphere (with finite radius). 

THEOREM 1.3 (Graham): Let V = v i , . . . , v ~  E ] ~  be nonsphericat. Then for 

any N there exists a set E C ]~N w i t h / ) ( E )  > 0, and a set T C R with D_(T) > 0 

such that E contains no congruent copy of tV  for any t E T where 

D(E)  = liminf m(S n E) 
t( s)-.~ re(S) 

As some configurations may not he found in the set itself, it may be useful to 

weaken the condition, and try to find the configurations arbitrarily close to the 

set. A theorem by Furstenberg, Katznelson and Weiss [FKW] shows that with 

this weaker condition, one can find triangles in the plane: 

THEOREM 1.4 ([FKW]): Let E C R 2 with D(E)  > O, and let E~ denote the 

points at distance ~ 5 from E. Let v ,u  E iR2 ; then there exists 1o such that 

for I > lo and any 5 > 0 there exists a triple {x, y, z} C E5 forming a triangle 

congruent to (0, lu, Iv}. 

The idea of the proof is to translate the geometric problem to a dynamical prob- 

lem, where E corresponds to some measurable set E, with positive measure, in 

a measure preserving system (X, B, #, R2). The statement that  E~ contains a 

certain configuration corresponds to a recurrence condition on the set E. In the 

case of triangles (configurations formed by 2 vectors), the problem is reduced to 

the case where (X, B, #, 1t(2) is a Kronecker action, and it can be shown that,  in 

this case, the recurrence condition holds for configurations of all sizes (we give 

a short proof of this fact in the appendix). We generalize this result to higher 

dimensions. 

MAIN THEOREM: Let E C iRk (for k > 2) have positive upper density, and 

let E5 denote the points of  distance ~ 5 from E. Let u l , . . . , u k + l  C iR k be 

h + 1 points which are amnely independent. Then there exists lo such that for 

any I > I0 there exist { x i , . . . ,  xk+2} E E~ forming a configuration congruent to 

(0, lui , . . . ,  luk+l}. 
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One would expect, following Bourgain's generalization of the original problem, 

that  increasing the dimension would allow us an 'extra vector', that  is, config- 

urations formed by k vectors in IRk. However, it turns out that  dimension 2 is 

not typical, and for all dimensions > 2 the reduction to the case of a Kronecker 

action can be carried out for configurations formed by k + 1 vectors in R k. 

ACKNOWLEDGEMENT: This paper is part  of the author 's  master thesis, written 

under the supervision of Prof. H. Furstenberg. I thank Prof. Furstenberg for 

introducing me to Ergodic Theory, and for his encouragement and advice. I 

would also like to thank Prof. Bergelson for his valuable suggestions. 

2. T r a n s l a t i o n  o f  t h e  g e o m e t r i c  p r o b l e m  to  a d y n a m i c a l  p r o b l e m  

We would like to solve the geometric problem using methods from ergodic theory, 

therefore we would like to translate it to a dynamical problem. The translation 

as shown here was done in [FKW]. 

Let E C IRk such that  D(E) > 0. Define 

p(u) = rain{l, dist(u, E)}. 

The functions ~v(u) = ~(u + v) form an equicontinuous, uniformly bounded 

family, and thus have compact closure in the topology of uniform convergence over 

hounded sets in IRk. Denote this closure by X. IRk acts on X by Tv¢(u) = ¢(u+v) 
for ~ c X, u, v c IR k. X is a compact metrizable space and we can identify 

Borel measures on X with functionals on C(X). Since / ) (E)  > 0, there exists a 

sequence of cubes Sn such that  

m(S,~ n E) ~ D(E) > O. 
m(Sn) 

We wish to define a probability measure # on X. We define the following 

probability measures: for f C C(X), let 

#'~(f) - m(Sn~ f(T.v)dm(v). 
n 

We have for some subsequence {nk} 

W $  

#nk ----+ # 

and # is the desired probability measure. Set f0(¢) = ¢(0); then f0 is a 

continuous function on X. We def ine/ )  C X by 

¢ c k fo (¢)  = o ¢(o)  = o; 
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/) is a closed subset of X and we have 

#(/~) : l i r a  f(l - f0(~b))ld#(¢). 
1- - )~  J x  

LEMMA 2.1: #(/~) > 0. 

Proofi It suffices to show that for any l, 

x(1 - f0(¢))Zd#(¢) > D(E),  

but 

I x ( 1 - / o ( * ) ) ' d # ( ¢ )  = lim 1 / s  ( 1 -  fo(T.~p))Idm(v) 

: lim 1 ~ (I - V(v))Idm(v) 

> lim m(Sn, n E) _ D(E) > O, 
- k ~  m ( S ~ )  

since ~(v) = 0 for v E E. I 

Tile next proposition establishes the correspondence between E and / ) .  

Let E C R k and JE as above. If for ul , . . •, uz C R k we have 

z(~: n T~lik n . . .  n T : l k )  > o, 

PROPOSITION 2.2: 

(1) 

then for all ~ > O, 

E ~  n (E~ - -  ul)  n . . .  n (E~ - ul) ¢ ~. 

Proof." Define the function g on X by 

S :o(,) :o(,)< g(~) 
o if fo(~) >_ 5 .  

Since g(¢) is positive for ¢ E/), (1) implies 

f g ( ¢ ) g ( % , ¢ ) . . .  > 0. g(T,, ¢)d# 

In particular, for some Tw~o the integrand is positive. As 

g(Twv) > O < ; ~(w) < ~ , = ,  w e E~ 

we have 

w E E ~ , w + u l E E ~ , . . . , w + u l 6 E ~ .  I 

We can now forget the original set E, and the geometric problem takes the 

following dynamical form: 
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MAIN THEOREM (Dynamical Version): Let (X, B,  #, (Tu)~,e~k ) be an ]Rk action, 

u l , . . .  ,uk+l E IRk aflinely independent, and A C X, #(A) > 0. There exists to 

s.t. for all t > to, there exists P E SO(k) s.t. 

#(A A T ~  1A N . . .  N T~luk+, A) > 0, 

where SO(k) is the special orthogonal group acting on ]I{ k . 

3. P r e l i m i n a r i e s  

In the following section we give some of the measure theoretic and ergodic theory 

preliminaries required for understanding the proof of the theorem. The theorems 

are stated without proofs. For the proofs see [Ful] and [Pc]. 

A m e a s u r e  p r e s e r v i n g  s y s t e m  (m.p.s.) is a system (X, B, #, G) where X is 

an arbitrary space, B is a a-algebra of subsets of X, # is a a-additive probability 

measure on the sets of B, and G is a locally compact group acting on X by 

measure preserving transformations. The action of G is e rgodic ,  if T - 1 A  = A, 

VA C B, T C G, implies #(A) = 0 or #(A) = 1. In this case we also say that /~  

is ergodic with respect to the action of G. Each T induces a natural operator on 

L 2 (X, B, #) by T f  = f o T, and the ergodicity of the action of G is equivalent to 

the assertion that there are no non-constant G-invariant functions. We have: 

THEOREM 3.1 (Mean Ergodic Theorem): Let ( X , B , # , T )  be a m.p.s, and 

f E L2(X). Then 
N 

1 L2(X) 
-~ E f o T ' ~  P f ,  

rz=l 

where P f is the orthogonal projection of f on the subspace of the T invariant 

functions. 

A h o m o m o r p h i s m  a : (X, B,#, G) ~ (Y,I), v, G) of a m.p.s, is a homo- 

morphism of measure spaces which commutes with the action of G. In this 

case we say that (Y, 7?, v, G) is a f ac to r  of (X, B, #, G), and (X, B, #, G) is an 

e x t e n s i o n  of (Y, :D, v, G). The two measure preserving systems are e q u i v a l e n t  

if the homomorphism of one to the other is invertible. 

A m.p.s. (X, B, #, G) is r egu l a r  if X is a compact metric space, B the Borel 

algebra of X,  /~ a Borel measure. A m.p.s, is s e p a r a b l e  if B is generated by a 

countable subset. As every separable m.p.s, is equivalent to a regular m.p.s., we 

will confine our attention to a regular m.p.s. 

Let ~: (X, B, #, G) ~ (Y, 7), v, G) be a homomorphism of a m.p.s. The map 

f ~ f~  = f o a identifies L2(Y,I?,v)  with a closed subspace L2(Y,7) ,v)  ~ c 
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L2(X, 13,#). If P denotes the orthogonal projection of L2(X, 13,#) to 

L2(y, T), L,) c~, then we define E ( f l Y )  for f E L2(X, 13, I-t) by 

E ( f l Y  ) E L2(Y, ID, L,), E ( f I Y )  ~ = Pf .  

The operator E(.IY) commutes with the action of G, i.e. for each f E L 1 (X, 13,/~), 

and T E G, E ( T f l Y  ) = T E ( f I Y ) .  

3.~1 DISINTEGRATION OF MEASURE. Let (X ,B ,# )  be a regular measure space, 

and let ~: (X, B,/z) ~ (Is,/), u) be a homomorphism to another measure space 

(not necessarily regular). Suppose c~ is induced by a map ~: X --~ Y. In this 

case the measure # has a disintegration in terms of fiber measures #y, where #y 

is concentrated on the fiber ~ - l ( y )  = Xy. We denote by A4(X) the compact  

metric space of probability measures on X. 

THEOREM 3.2: There exists a measurable map from Y to AJ(X) ,  y -+ #y which 

satisfies: 

(1) For every f E L I (X ,B ,# ) ,  f C L I ( X , B , # y )  for a.e. y E Y,  and E ( f i Y ) ( y )  

= f fdpv for a.e. y C Y 

(2) f { f  fd/zu}d,(y) = f fdp  for every f e L I (X ,B ,p ) .  

The map y ~ py is characterized by condition (1). We shall write # = f #ud• 

and refer to this as the disintegration of the measure I~ with respect to the factor 

Y. 

If (X, B, #, G) is a m.p . s . , / )  the algebra of all G-invariant sets, # = f #xdp(x) 

the disintegration of ]~ with respect to 7), then #x is G-invariant and ergodic, for 

a .e .x .  

3.2 THE KRONECKER FACTOR. An action of a locally compact abelian group 

G by measure preserving transformations Tg on a measure space (X, B, #) is a 

K r o n e c k e r  a c t i o n  if X is a compact abelian group, # the Haar measure on X,  

and there is a homomorphism T, T: G -+ X with w(G) a dense subgroup of X,  

and 

To(x ) = x + ~-(g). 

The system (X,/3, #, G) is called a K r o n e c k e r  s y s t e m  (or an a l m o s t  p e r i o d i c  

s y s t e m ) .  Equivalently, (X, 13, #, G) is Kronecker if the eigenfunctions of G span 

L 2(X). Every ergodic system has a maximal almost periodic factor: 

THEOREM 3.3: Let (X, 13, #, T0) be an ergodic measure preserving action of an 

abelian group G; then there is a map 7r: X --+ Z where Z is a compact abelian 
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group, and a Kronecker action Tg on Z such that Tgrr(x) = 7c(Tg(x)) for a.e. 

x E X.  For every character X on Z the function X'(x) = ,(Tr(x)) satisfies 

= + = 

and so is an eigenvector of the G-action, and, moreover, every eigenfunction of 

the G-action comes about this way. 

The  factor  sys tem (Z,/3,  m, G), where 19 is the a lgebra  of Borel sets, and m the 

Haar  measure ,  is unique up to i somorphism and is called the Kronecker  factor  of 

(X, B, #, G). For the proof  see [Fu2]. 

4. T h e  M a i n  T h e o r e m  

T h r o u g h o u t  this section (X,B,#,(T~)~eek)  is an ergodic act ion of R k, 

(Z,Z),m,(Tu)~e~k) the corresponding Kronecker factor, r :  R k Z the 

h o m o m o r p h i s m  inducing the R k action on Z. We have a m a p  7c : X ~ Z 

which defines a 'd is integrat ion '  of the measure  tt to measures  #z, z E Z, with 

ltz suppor ted  by 7r- l (z)  for a . e . z .  Let f ( z )  be the project ion of f E L2(X) to 

L2(Z), i.e. 

f ( z )  = -- f fd#z.  

We denote  by f~(x)  the lifting of ] ( z )  to L2(X), i.e. 

p ( x )  = ion(x) .  

4.1 R E D U C T I O N  TO THE K R O N E C K E R  FACTOR. 

Definition 4.1: Let Z be a compact  abel ian group, T: R k > Z a homo- 

morphism.  We say tha t  U l , . . . , u t  are T - i n d e p e n d e n t  if, given {X~}~=I E Z, 

l-[i Xi('r(ui)) # 1 unless the Xi are all trivial. 

LEMMA 4.2: I f u l , . . .  ,ul are T-independent, then for any  f l , - - - , f l  C L °~ 

N 1 / / 
N E T ~ I + ~ I f l ' "  .Tn~,+a, ft L . ~ )  f t - - -  fl 

r~=l 

uniformly in al, . . . , at. 

P r o  of: I t  is enough to  show this for fi  characters  on Z: 

N l 

n = l  i=1 
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N l 

n = l  i = l  

l N l / . 
= HXi(7"(ai))X~(Z)N E H ( ) ~ i ( T ( % t i ) ) )  n am(z) 

i = 1  n = l  i = 1  

N l 2 

n = l  i = 1  

By the Weyl Theorem we have 

N l 2 

o, 
n = l  i = l  

if the Xi are not all trivial. | 

LEMMA 4.3: Let H be a Hilbert space, ~ E E some index set, and let u~(~) E H 

be uniformly bounded in n, ~. Assume that for each m the limit 

N 

n = l  

exists uniformly and 

M 
(2) lim 1 ~ ~ ~ ~m(~) = o 

r n = l  

uniformly. Then 

N 1 ~ uo(~) --~ o 
n ~ l  

uniformly in ~. 

Proof: Let M be large enough so that the expression in (2) is small uniformly 
in ~. Let N be large enough with respect to M so that the two expressions 

N M N 

N M  E E Un+m(~), 
n = l  m = l  n = l  
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are close uniformly in ~. We have 

I[/'/'/'/'/'/'/'/'/'/-~ E l/'n+m(~)[12 "~ 1 JIM E ?~nWm(~)l[2 
n=l  rn=l n=l  m=l  

N M 
1 

- N M 2 E  E (u~+m,(~),Un+m~(~)) 
n : l  ml,m2=l 

M 

Z 
ml,m2=l  

which is small, uniformly in ~. | 

LEMMA 4.4: Let (X, B, Iz, (T~)~e~k) be an ergodic action of 1R k. Suppose for 

some v E R k , Tv acts ergodically on (X, B, #). Then every eigenvector of  Tv is 

an eigenvector of the IRk action. 

Proof." [FKW} The  next proposit ion will enable us to evaluate averages of 

flmctions on X by evaluating the averages of the projections of the functions 

on the Kronecker factor. 

PROPOSITION 4.5: Let (X, B, #, (Tv)v~Rk) be an ergodic action of R k, and let 

I~1,..., Ul E N k, t ~ k 2¢_ 1 be s.t. for all i <_ t, {Uj -- Ui}}¢i,j= 1 are T-independent, 
T t l and { ~j_u, }Je~,J=~ act ergodically, and assume that {T~,}~= 1 also act ergodi- 

cally. Let f l , . . . ,  fl be bounded measurable functions on X .  Then 

N l N l 1 1 L2(~) 
~ E y t  Tnui+aifi(x) - ~ ~ f I  Tnui+ai]i~:(x) 0 

n=l  i=1 n=l  i=1 

uniformly in a l , . . .  , al 

Proof: The proof  is by induction. For l = 1 

N 1 / 
~ T~u+af(x) > f d #  

uniformly in a, by the Mean Ergodic Theorem. Assume it is t rue for l -  1 < k +  1, 

and suppose U l , . . . ,  uz satisfy the conditions above. We apply Lemma 4.3 with 

= ( a l , . . . , a z ) ,  H = L 2 ( X , B , ~ )  and 

vn = I I  
i = 1  
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We have 

lim 1 N 
N-+oo N E (vn' Vn+rn) 

n = l  

: lim 1 ~ - ~ / I ~  I N-~oo K Tnui+a*fi(x)T(n+m)ui+a'fi(x)d# 
n = l  i = 1  

=l m N--+oo -N fl(X)Zmu~fl(X) Ilzn(u~-ul)+(a'-aJ(fiTmu~fi)(x)d# 
n = l  i = 2  

N l 
• 1 

= / f,(x)T,~,fl(x) Nhmoo ~ E I-IT~(~-'~,)+(~,-~,) (f~Tm~,y~)(x)d# 
n = l  i = 2  

N l 

-- lfl(x)Tmulfl(x) lira 1 ~ ~ • N ~  N E HT'~(~-u,)+(~,-~,) (fiT~,]i) (x)d# 
n = l  i = 2  

l 

: / f l (X)Tmulf l (x)d"i~=2 / f i (x)Tmuif i (x)d,  

l 

: H f fi(x)T~,fi(x)d. : 7m 
i:l 

uniformly in ( a l , . . . , a l ) ,  using Lemma 4.2 and the induction hypothesis, as 
u ~ 1 / + 1  _ u . l / + l  

{ ( ' t t j  - -  "tt l)  -- (%t i -- 1}Ijs£i,j= 1 = {Uj zJj#i,j=l" Finally 

M  ,mi / /  M--,~-M ~ 7m . . . .  fl(Zl)..,  fl(xz)F(zt,.. . ,xt)@(xi)...dt4x,) 
m = l  

where 
M 

F(xl,... x l ) =  lim 1 
m : l  i 

which is well defined by the Mean Ergodic Theorem. Now suppose fj is orthog- 

onal to all eigenfunetions of the Nk-action; then by Lemma 4.4 it is orthogonal 

to all eigenfunetions of T~j. Clearly 

so we conclude that 

and hence 

F(T~,xI,..., T~,zl) = F ( z l , . . . , x z )  

f j ( x j ) F ( X l , . . . ,  xt)d#(xj) = O, 

M 
1 

lira ) ~  7-~  = O. 
M--*oo 

r n = l  
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Hence in this case we have 

N i 
1 

N-+oolim EII oo +a,S, = ° 
n=l i 

in L2(X) uniformly in ( a l , . . . ,  at). Now set 

i ,  = } 2  + ( i / / -  

(in L2(X)) and the result follows. I 

4.2 PROOF OF THE THEOREM SUBJECT TO CONDITION (*). Without  loss of 

generality, we may assume by disintegration of # that  the action of tR k is ergodic. 

Let f = 1A be the characteristic function of the set A, and f the projection 

of f on L2(Z), the Kronecker factor of X. Since f > 0, we have f _> 0, and 

p(A) > 0 implies f f >  0. Let W be a neighborhood of unity in Z such that,  if 

w l , . . . , w k + l  E W, then 

£ f ( z ) f ( z  +w~). . . f (z  + wk+l)d-~(z) > > O, a 

for some a. Let ~v be the homomorphism 

99: Mk(R) ) Z k+l 

M ,  > 

where Mk(R) is the set of k x k matrices over R, and let ft be the closure of 

the image of Mk(]R) in Z k+l. We say that  M E Mk(R) , P  e SO(k) satisfy 

c o n d i t i o n  ( ,)  if Mvl, . . . ,  Mvk+~ satisfy the conditions of Proposition 4.5, the 

image of {nM}~_l  is dense in ft, and MtP is an antisymmetric matrix. Suppose 

we find such matrices; then since ft is compact, there exists an L C N, such that  

for each U c Mk(]R) and L0 > 0, there exists an L0 < n < L + L0 s.t. 

~a(nM + U) = (m(nMUl + UUl),... ,7(nMuk+l + Uuk+l)) E W k+l. 

Hence for all U E Mk (R) 

-~ f (z) f (z  + m(nMul + Uul))... f(z + T(nMuk+l + Uuk+l))dm(z) 

a > - -  
2L 
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for all N greater than L. From Proposition 4.5 there exists an No such that  for 

all N > No 

a 

f (x )TnM~l+u~, f (x) ' "  "Tnlduk+l+uuk+lf(X)dlt > 4-L 
n=-I 

for all U. Hence 
N 

1 a 
Z #(A N T(nM+U)~ A N ' . .  N T(nM+U)~k.I A) > 4-L 

for all N > No, for all U. Now take U = tP. For each t, there exists an n < No 

s. t .  
a 

# ( A n  T(nM+tP)ulA n ' . "  n T(nM+tP)u~+ , A) > ~-~. 

Since M t P  is antisymmetric, M E Tp(SO(k)),  the tangent space of SO(k) at P.  

We have 

P '  := P e x p ( e n P - 1 M )  = P ( I  + e n p - 1 M  + o(e)) = P + e n M  + o(e); 

hence 
l_(p + nM)  - _lp, = o(1). 
C 

Now the T~ satisfy the following continuity condition: 

w 3 5 :  Ilu -  '11 -< 5 Itt(A n T~A) - #(A n T ,A)I <_ E. 

Therefore, for t = 1/e large enough, P~ as above, 
g 

#(A N Ttp, uIA O . . . N Ttp, uk+~A) > ~-~. 

We have thus proved the theorem. | 

4 . 3  T H E  EXISTENCE OF THE MATRICES M , P  SATISFYING CONDITION (*).  

We first show that if ~k acts ergodically, then the set of points which do not act 

ergodically is very small. 

PROPOSITION 4.6: I f  ( X , B , # , T ~ )  is an ergodic action of R, then but for a 

countable set of u C •, T~ acts ergodically. I f  (X, B, #, T~,) is an ergodic action 

of ]~z, then but for a countable set of l - 1 dimensional hyperplanes, all l - 1 

dimensional hyperplanes through the origin act ergodically. 

Proof." [PS]. We now prove the main proposition. The idea is that while for 

k = 2 the orthogonal group is contained in a proper hyperplane in ~4, for k > 2 

the orthogonal group is large enough, and intersects each proper hyperplane in 

]R k2 in a subvariety of lower dimension. 
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PROPOSITION 4.7: Let qo, f~ be as in the previous section• There exist matrices 

M E Mk(R), P E SO(k) satisfying the following conditions: 

1. {qo(nM)}n~__l is dense in a .  
2. {M(uj - -  U ~ / ' k + l  ~JU=I,(j#O are r-independent, for i = 1 , . . .  ,k  + 1. 

k+l 3. { M u i } i = l ,  {M(uj - u .'l/,k+l z] J i , j= l,(j:fii) act ergodically. 
4. Mt p is an antisymmetric matrix. 

For the proof  of the proposit ion we will need the following lemmas: 

LEMMA 4.8: The group SO(k) (k >_ 3) linearly spans Mk(R). 

Proof'. 

odd, we denote  

One can 

1 
0 
0 
0 
0 

We separately prove the cases when k is odd and when k is even• For k 

1 m = i , n = j ,  
(Eij)mn= 0 otherwise• 

get the Eij using sums of matrices of the form 

0 0 0 
0 - 1  0 
1 0 0 
0 0 1 
0 0 0 1 

1 0 0 0 \ / 0 0 I 0 
0 - 1  0 0 
0 0 0 - 1  
0 0 0 0 - 1  

0 . . .  0 - 1  0 . . .  0 1 

For k even we can get, using similar matrices, matrices of the following form: 

for l  < _ i < k , l  < _ j < k  

1 m = i , n = j o r  { 1  
(Eij)mn= m = i + l , n = j + l ,  (Fij)mn= -I 

0 otherwise. 0 

ibr j = k, l < i < k  

1 rn = i, n = k, 
(E~k)mn= --1 m = i + l , n = l ,  

0 otherwise. 

and for i = j = k we have 

{1 
= o 

= { 

m = i , n = j ,  
m = i +  l , n = j + 2 ,  
otherwise• 

1 m = i , n = k o r  
m = i + l , n = 2 ,  

0 otherwise• 

m =  1, n =  1 or m = k, n = k ,  
otherwise. 

For example, 

0 1 0 0 - 1  0 
0 0 0 , 0 0 0 

• • • 0 . . . 0 
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i 0 ... 
1 0 . . .  

. . ,  

0 

which add up to matrices of the form 

{1 
= 0 

r n = i , n = j , j + l ,  
otherwise; 

for example, 

i 1 0 0 0 0 0 
0 0 0 

As vectors in ]R k2 they form the following k 2 × k 2 matrix: 

1 1 0 
0 1 1 0 

0 1 1 0 
0 1 - 1  0 

0 1 1 0 

1 

1 m = n o r m = n - l f o r m ¢ l k ( l < _ t < k )  o r m = k 2 ,  n = l ,  
(Ei j )mn = - 1  m = Ik, n = lk + l (1 < l < k ) ,  

0 otherwise. 

The number of - l ' s  in the secondary diagonal is k - 1 (one for every k-th row 
but the last one), and is therefore an odd number, therefore the determinant is 

¢ 0, hence the vectors are independent. | 

LEMMA 4.9: Let  k v k ~ k  {si}i=l, { i}i=1 C IR k, f ( M )  = i=1 (si, Mv i ) ,  and suppose 

f 7~ O. Let  D be the set o f  matrices in SO(k) which satisfy f ( D )  = c for some 
constant  c C- R. Then  dim 79 (as an algebraic variety) < dimSO(k). 

Proof: Suppose f ( P )  = c for all P E SO(k). Let O be some matrix in SO(k); 
then f ( M  - O) ~ O, but f ( P  - O) = 0 for all P E SO(k), in contradiction to 
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Lemma 4.8. Therefore there is a point P C SO(k) which is not in :D. Hence :D 

is a proper subvariety of SO(k). Since SO(k) is irreducible, dimT? < dim SO(k). 

I 

LEMMA 4.10: Let p be the homomorphism 

~: Mk(R) ~ Z k+l 

M ,  > ( r (Mul ) , . . . ,~ - (Muk+l ) ) .  

Let ~ be the closure of the image of Mk(R) in Z k+l. Then for all matrices but 

a countable number ofhyperplanes in Mk(IR) = 1~ k2 , the image of {(nM)}n~_l is 

dense in f~. 

Proof: Since Z k+l is a compact abelian group, so is f~. The image of {(nM)}~= 1 

is dense in f~ if no character X ¢ 1 in ~) satisfies X(~(M)) = 1. As X o ~ is a 

character on IR k~ it is of the form X o ~o(M) = e 2Èi(N'M) for some N C ]R k~ . Since 

ft is a compact metrizable abelian group, ~) is countable. I 

LEMMA 4.11: For each j 1 , . .  oo, let k Rk = • {vii}i=1 C be a linearly independent 
set, and k {sij}i=l C ~, such that (sj j , .  .. , sjk) ¢ 6. There exists an antisymmetric 

matrix B C Mk(R) s.t. 

k 

Vj: f j ,B(M) de=f E (Sij, MBvi j}  ~ O. 
i=1 

Proof: Let B be the subspace of antisymmetric matrices. Since f j ,B(M)  is linear 

in M, we have f j , B ( M )  =-- 0 ~ B satisfies the k 2 linear equations given by 

the standard basis for R k~ . Hence for each j ,  the 'bad'  B form a linear subspace 

of B. Since we have only a countable number of inequalities, it suffices to show 

that this linear subspace is a proper subspace of B. So without loss of generality, 

we have only one inequality. Assume 

k 

VB c U: (Ms , Bvd  =- 0 (w.l.o.g. Sll # 0). 
i=1 

Taking (with the notation of Lemma 4.8) M = E n  and M = E21, we get 

k k k k 

l = l  j = l  j = l  j = l  

k k k k 

/=1 j = l  j = l  j = l  
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A s  t h i s  is t r u e  fo r  a l l  b 1 2 , . . . ,  blk ,  b23, .  • •,  b2k C [{, 

S l l V l j  -~ "'" "Jc S k l V k j  --~ 0 

for 1 _< j < k. Hence 

811Vl -'I- ' ' "  Jr- S k l V  k = O, 

which is a contradiction to the linear independence of the vi. | 

Proof of Proposition 4.7: We first wish to fulfill the T-independence requirement. 

Suppose Wl , . . . ,  wk E Nk; then wl, . ,wk are independent with respect to T, if 

for all k { X i } i = I  in 2 

X1 o T(Wl)  "" )Ck 0 T ( W k )  • 1. 

As X o T is a character on ]Rk it is of the form X o r(w) = e 2~ri(s,w) , so the condition 

above is equivalent to a countable number of inequalities of the form 

k 

~-~(sj~,w3) ¢ 1. 
j = l  

Hence the M we are seeking must satisfy the inequalities 

k+l  

(3) gin(M)= E ( s j m , M ( u j - u i ) ) ¢ l  f o r i = l , . . . , k + l .  
( j # i ) , j = l  

Since Ul , . . . , uk+z  are affinely independent, for each i = 1 , . . . , k  + 1 the 
_ u . ~ l k + l  ((Uj zIJj=l,(jT~i) are linearly independent, so gm 7~ 0. Our M will also have 

to satisfy the inequalities arising from the requirement (2) (Lemma 4.10): 

k 

(4) fro(M) = (Nm, M) = E (Nmei, Mei) 7 ~ rm. 
i=1 

Let B be the antisymmetric matrix of Lemma 4.11, for the inequalities fro(M), 

gin(M) 7~ O. From Lemma 4.9, for almost all P E SO(k) (with respect to the Haar 

measure on SO(K)),  the matrix M = P B  satisfies the inequalities (3) and (4). 

We still have the ergodicity requirement, but by Proposition 4.6, it is satisfied 

by almost all M -- PB. We have found the desired M and P. | 
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5. A p p e n d i x  

If (Z, B, #, R k) is a Kronecker action, then the Main Theorem (dynamical  version) 

holds for all configurations U l , . . .  ,ut C R k. There are several ways of proving 

this fact. One is implicit in the proof  of the Main Theorem; we provide another  

one based on Theorem 1.1, for the case k = 2. 

PROPOSITION 5.1: Let  ( Z , B , # , R  2) be a Kronecker action, A E B a set of  

posit ive measure. Let  U l , - . . , u t  6 R 2. Then there exists R 6 N such that  

for all r > R there exists P E SO(2) such that  

#( A N T-lrPv, A N " " M T~-lv, A) > O. 

Proof'. If we think of U l , . . .  ,ul as points in C, then we must  show tha t  for r > R 

there exists Iwl = r such tha t  

 (AnT&An... n T & A )  > 0. 

Let f = 1A, and let V be a neighborhood of the identity in Z such tha t  V l , . . . ,  vt C 

V; then 

f f ( z ) f ( z  + V l ) . - . f ( z  +v l )  > > 0 a 

for some a. It  suffices to show tha t  3R  such that  for all r > R there exists Izl = r 

such tha t  

T ( Z U l ) , . . .  ,T ( z u l )  • V. 

n V Since Z is compact ,  Z = Ui=l(  + zi). Assign to each z • C the /-tuple 

( a l ( z ) , . . . ,  at(z)) ,  where aj(z)  = i, if 7(zu j )  • V ÷ zi (if there is more than  one i 

corresponding to a certain j ,  just  pick one of them arbitrarily).  As aj (z) < n for 

all j,  z, we have only a finite set of such/- tuples .  Therefore there is a measurable  

set E C C, with D ( E )  > 0, so that  if z , z '  • E ,  then aj(z)  = aj(z ' )  for all j .  I t  

follows, by the definition of the aj, tha t  z, z' • E implies T((z - z ' )u j )  • V for 

1 < j < l. By Theorem 1.1 one can find all large distances in E ,  and hence one 

can find all large distances from the origin in E - E.  I 

[Bo] 

[FM] 
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